Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Environ Res ; 95(4): e10856, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36949613

RESUMEN

Activated sludge is a conventional treatment process for biochemical oxygen demand (BOD) and total suspended solids (TSS) removal at water resource recovery facilities (WRRFs). Foaming events are a common operational issue in activated sludge and can lead to decreased treatment efficiency, maintenance issues, and potential environmental health risks. Stable foaming events are caused by biological and chemical drivers (i.e., microbes and surfactants) during the aeration process. However, foaming events are difficult to predict and quantify. We present an inexpensive and easy-to-use method that can be applied at WRRFs to quantify foaming potential. Subsequently, the method was applied over a year-long full-scale study while data on microbial community composition and functional parameters associated with foaming potential were collected from activated sludge samples at South Shore Water Reclamation Facility (WRF) (Oak Creek, WI). Results from the development of the foaming potential method using linear alkylbenzene sulfonate (LAS) showed that the method was reproducible (relative standard deviation <20%) and able to capture changes in foam-inducing constituents. Using full-scale activated sludge samples, higher relative abundance values for the following genera were associated with foaming events: Zoogloea, Flavobacterium, Variovorax, and Bdellovibrio. This is the first report that Variovorx and Bdellovibrio relative abundance was correlated with foaming events in activated sludge. Furthermore, the foaming potential positively correlated (ρ = 0.24) with soluble total nitrogen. Characterizing foaming events through frequent sampling and monitoring of specific genera and functional parameters may allow for predictions and preemptive mitigation efforts to avoid negative consequences in the future. PRACTITIONER POINTS: A reproducible method to measure foaming potential in activated sludge is available. Genera Zoogloea, Flavobacterium, Variovorax, and Bdellovibrio correlated with foaming events. A year-long sampling campaign of activated sludge measuring foaming potential and microbial community composition was conducted at South Shore Water Reclamation Facility in Oak Creek, WI. More research at other facilities with this method is needed to understand links between microbes and foaming.


Asunto(s)
Microbiota , Purificación del Agua , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Nitrógeno , Agua , Reactores Biológicos
2.
J Environ Manage ; 327: 116898, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36459783

RESUMEN

Hybrid anaerobic-aerobic biological systems are an environmentally sustainable way of recovering bioenergy during the treatment of high-strength wastewaters and landfill leachate. This study provides a critical review of three major categories of anaerobic-aerobic processes such as conventional wetland, high-rate and integrated bioreactor systems applied for treatment of wastewaters and leachate. A comparative assessment of treatment mechanisms, critical operating parameters, bioreactor configurations, process control strategies, efficacies, and microbial dynamics of anaerobic-aerobic systems is provided. The review also explores the influence of wastewater composition on treatment performance, ammonium nitrogen removal efficacy, impact of mixing leachate, energy consumption, coupled bioenergy production and economic aspects of anaerobic-aerobic systems. Furthermore, the operational challenges, prospective modifications, and key future research directions are discussed. This review will provide in-depth understanding to develop sustainable engineering applications of anaerobic-aerobic processes for effective co-treatment of wastewaters and leachate.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Anaerobiosis , Estudios Prospectivos , Integración de Sistemas , Reactores Biológicos , Contaminantes Químicos del Agua/análisis , Nitrógeno
3.
Chemosphere ; 279: 130876, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34134436

RESUMEN

Conventional wastewater treatment processes cannot effectively remove dissolved organic nitrogen (DON) and soluble non-reactive phosphorus (sNRP), which can pose regulatory compliance challenges for total nitrogen and total phosphorus discharges. Moreover, DON and sNRP are not easily recoverable for beneficial reuse as part of the waste to resource paradigm. Conversion of DON and sNRP to more readily removable dissolved inorganic nitrogen (DIN) and soluble reactive phosphorus (sRP), respectively, will help meet stringent nutrient limits and facilitate nutrient recovery. In this study, electro-oxidation (EO) was evaluated for conversion of four DON compounds to DIN and five sNRP compounds to sRP. EO was more efficient and provided higher extents of conversion of the recalcitrant nutrient fractions compared to a more traditional advanced oxidation process, UV/H2O2. Direct electron transfer was likely the dominant oxidation mechanism for EO-based DON and sNRP conversion, with DON being more recalcitrant. Among the DON compounds tested, greater availability of primary amine (C-N bonds) yielded greater conversion compared to compounds with fewer primary amine or those with secondary amine (C-N-C bond). Among the sNRP compounds tested, those with P-O-C bonds (organic sNRP) converted more readily than those with P-O-P bonds (inorganic sNRP), presumably because cleavage of the latter bond requires greater energy. Using 30 min of EO treatment, the highest DON and sNRP compound conversion was 11.7 ± 0.09% for urea and 31.1 ± 0.75% for beta-glycerol phosphate. A similar extent of EO-based conversion of DON (6.41 ± 1.5%) and sNRP (32.7 ± 3.3%) was observed in real wastewater.


Asunto(s)
Fósforo , Purificación del Agua , Peróxido de Hidrógeno , Nitrógeno/análisis , Aguas Residuales
4.
Chemosphere ; 278: 130391, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33838419

RESUMEN

Soluble non-reactive phosphorus (sNRP), such as inorganic polyphosphates and organic P, is not effectively removed by conventional physicochemical processes. This can impede water resource reclamation facilities' ability to meet stringent total P regulations. This study investigated a UV/H2O2 advanced oxidation process (AOP) for converting sNRP to the more readily removable/recoverable soluble reactive P (sRP), or orthophosphate, form. Synthetic water spiked with four sNRP compounds (beta-glycerol phosphate, phytic acid, triphosphate, and hexa-meta phosphate) at varying H2O2 concentration, UV fluence, pH, and temperature was initially tested. These compounds represent simple, complex, organic, and inorganic forms of sNRP potentially found in wastewater. The efficiency of sNRP to sRP conversion depended on whether the sNRP compound was organic or inorganic and the complexity of its chemical structure. Using 1 mM H2O2 and 0.43 J/cm2 (pH 7.5, 22 °C), conversion of the simple organic beta-glycerol phosphate to sRP was 38.1 ± 2.9%, which significantly exceeded the conversion of the other sNRP compounds. Although conversion was achieved, the electrical energy per order (EEO) was very high at 5.2 × 103 ± 5.2 × 102 kWh/m3. Actual municipal wastewater secondary effluent, with sNRP accounting for 15% of total P, was also treated using UV/H2O2. No wastewater sNRP to sRP conversion was observed, ostensibly due to interference from wastewater constituents. Wastewater utilities that have difficulty meeting stringent P levels might be able to target simple organic sNRP compounds, though alternative processes beyond UV/H2O2 need to be explored to overcome interference from wastewater constituents and target more complex organic and inorganic sNRP compounds.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Peróxido de Hidrógeno , Oxidación-Reducción , Fosfatos , Fósforo , Rayos Ultravioleta , Aguas Residuales , Contaminantes Químicos del Agua/análisis
5.
Water Environ Res ; 93(8): 1173-1178, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33316118

RESUMEN

There is a strong impetus to establish a circular phosphorus economy by securing internally renewable phosphate (Pi ) resources for use as agricultural fertilizers. Reversible Pi adsorption technologies such as ion exchange can remove and recover Pi from water/wastewater for reuse. However, existing reversible adsorbents cannot effectively discriminate against arsenate (As(V)) due to the similarity between As(V) and Pi chemical structure. If As(V) is co-recovered with Pi , the value of the recovered products for agricultural reuse is low. The objective of this study was to construct an immobilized phosphate-binding protein (PBP)-based Pi removal and recovery system and analyze its selectivity for Pi adsorption in the presence of As(V). A range of conditions was tested, including independent, sequential, and simultaneous exposure of the two oxyanions to immobilized PBP (PBP resin). The purity of the recovered Pi product was assessed after inducing controlled desorption of the adsorbed oxyanions at high pH (pH 12.5). Pi constituted more than 97% of the adsorbed oxyanions in the recovered product, even when As(V) was initially present at twofold higher concentrations than Pi . Therefore, PBP resin has potential to selectively remove Pi , as well as release high-purity Pi free of As(V) contamination suitable for subsequent agricultural reuse. PRACTITIONER POINTS: Existing reversible phosphate (Pi ) adsorbents cannot effectively discriminate against arsenate (As(V)) due to the similarity in their chemical structure. Co-recovery of As(V) with Pi can reduce the recovered product's reuse as a fertilizer. An immobilized phosphate-binding protein (PBP)-based system can be highly selective for Pi even in the presence of As(V). Pi constituted more than 97% of the recovered product, even when As(V) was present at 2-fold higher concentrations than Pi . Immobilized PBP offers advantages over existing Pi adsorbents by providing high-purity Pi products free of As(V) contamination for reuse.


Asunto(s)
Arseniatos , Fosfatos , Adsorción , Proteínas Portadoras , Concentración de Iones de Hidrógeno , Proteínas de Unión a Fosfato
6.
Environ Sci Technol ; 54(17): 10885-10894, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32786572

RESUMEN

A phosphate (Pi)-selective adsorption system featuring immobilized Pi-binding proteins (PBP) has recently attracted attention for ultralow Pi removal followed by recovery. This study investigated the adsorption kinetics, affinity, thermodynamics, and selectivity, as well as the effect of pH and temperature on Pi adsorption using immobilized PBP (PBP resin). Immobilizing PBP did not affect its Pi affinity. Kinetic studies at 22 °C and pH 7.1 showed that the PBP resin achieved 95% of its equilibrium capacity within 0.64 ± 0.2 min. The estimated Langmuir affinity constant (KL) was 21 ± 5 µM-1 Pi (220 ± 52 L/mg-Pi), which is higher than Pi adsorbents recently reported in literature. The ideal operating ranges for high-affinity Pi adsorption using PBP resin were pH 4.5 to 9 and temperature 14 to 37 °C. The Pi-PBP resin adsorption process was not affected by the presence of common anions (Cl-, Br-, NO2-, NO3-, SO42-, and HCO3-). Adsorption using the Pi-PBP resin was exothermic (ΔH = -6.3 ± 1.3 kJ/mol) and spontaneous (ΔG = -39.7 ± 0.1 to -43.2 ± 0.2 kJ/mol) between 14 and 43 °C. These results indicate that PBP resin's Pi adsorption rate and affinity surpass those of existing adsorbents. Future work to increase the PBP resin's adsorption capacity is important to its application as a viable Pi adsorbent.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Proteínas de Unión a Fosfato , Fosfatos , Temperatura , Termodinámica , Contaminantes Químicos del Agua/análisis
7.
J Environ Sci (China) ; 92: 129-140, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32430116

RESUMEN

Simultaneous overabundance and scarcity of inorganic phosphate (Pi) is a critical issue driving the development of innovative water/wastewater treatment technologies that not only facilitate Pi removal to prevent eutrophication, but also recover Pi for agricultural reuse. Here, a cell-surface expressed high-affinity phosphate binding protein (PstS) system was developed, and its Pi capture and release potential was evaluated. E. coli was genetically modified to express PstS on its outer membrane using the ice nucleation protein (INP) as an anchoring motif. Verification of protein expression and localization were performed utilizing SDS-polyacrylamide gel electrophoresis (SDS-PAGE), western blot, and outer membrane separation analyses. Cell surface characterization was investigated through acid-base titration, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR). These tests provided information on the macromolecular structure and composition of the bacteria surface as well as the proton-exchange properties of the surface functional groups (i.e., pKa values). Phosphate desorption and adsorption batch experiments were conducted to evaluate the effects of temperature, pH, and ionic strength on phosphate capture and release. The PstS surface-displayed cells demonstrated greater potential to release and capture phosphate compared to non-modified cells. Higher temperatures up to 40°C, basic pH conditions (pH = 10.5), and higher ionic strength up to 1.0 mol/L KCl promoted 20%-50% higher phosphate release.


Asunto(s)
Fosfatos , Fósforo , Adsorción , Proteínas Portadoras , Escherichia coli , Proteínas de Unión a Fosfato
8.
Appl Microbiol Biotechnol ; 104(10): 4563-4575, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32219463

RESUMEN

Buildup of volatile fatty acids (VFAs) in anaerobic digesters (ADs) often results in acidification and process failure. Understanding the dynamics of microbial communities involved in VFA degradation under stable and overload conditions may help optimize anaerobic digestion processes. In this study, five triplicate mesophilic completely mixed AD sets were operated at different organic loading rates (OLRs; 1-6 g chemical oxygen demand [COD] LR-1day-1), and changes in the composition and abundance of VFA-degrading microbial communities were monitored using amplicon sequencing and taxon-specific quantitative PCRs, respectively. AD sets operated at OLRs of 1-4 g COD LR-1day-1 were functionally stable throughout the operational period (120 days) whereas process instability (characterized by VFA buildup, pH decline, and decreased methane production rate) occurred in digesters operated at ≥ 5 g COD LR-1day-1. Though microbial taxa involved in propionate (Syntrophobacter and Pelotomaculum) and butyrate (Syntrophomonas) degradation were detected across all ADs, their abundance decreased with increasing OLR. The overload conditions also inhibited the proliferation of the acetoclastic methanogen, Methanosaeta, and caused a microbial community shift to acetate oxidizers (Tepidanaerobacter acetatoxydans) and hydrogenotrophic methanogens (Methanoculleus). This study's results highlight the importance of operating ADs with conditions that promote the maintenance of microbial communities involved in VFA degradation.


Asunto(s)
Bacterias Anaerobias/metabolismo , Reactores Biológicos/microbiología , Ácidos Grasos Volátiles/metabolismo , Microbiota , Anaerobiosis , Firmicutes/metabolismo , Metano/metabolismo , Methanomicrobiaceae/metabolismo , Aguas del Alcantarillado
9.
Environ Microbiol ; 21(5): 1798-1808, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30884118

RESUMEN

Methanogens are a diverse group of archaea that play a critical role in the global carbon cycle. The lack of appropriate molecular tools to simultaneously quantify numerous methanogenic taxa, however, has largely limited our ability to study these communities in a wide variety of habitats, such as anaerobic digesters (ADs). In this study, 34 probe-based quantitative PCR (qPCR) assays were designed to target all known methanogenic genera within the archaeal phylum Euryarchaeota. These qPCR assays were adapted to a high-throughput microfluidic platform, which allowed for the simultaneous detection and absolute quantification of numerous taxa in a single run. The resulting microfluidic qPCR (MFQPCR) platform was successfully used to decipher structure-function relationships among methanogenic communities in four laboratory-scale digesters exposed to a transient organic overload. Twelve of the 34 genera targeted in the MFQPCR were detected in the ADs, similar to results obtained using high-throughput sequencing. The MFQPCR platform and conventional qPCR assays also generated similar quantitative results. The MFQPCR tool developed here will help optimize AD technologies for efficient waste treatment and enhanced biogas production and can facilitate studies that will increase our understanding of methanogenic communities in other environments.


Asunto(s)
Archaea/aislamiento & purificación , Archaea/metabolismo , Metano/metabolismo , Microfluídica/métodos , Anaerobiosis , Archaea/clasificación , Archaea/genética , Biocombustibles/análisis , Euryarchaeota/clasificación , Euryarchaeota/genética , Euryarchaeota/aislamiento & purificación , Euryarchaeota/metabolismo , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa
10.
Water Environ Res ; 91(7): 606-615, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30737846

RESUMEN

Nutrient recovery from municipal wastewater was evaluated using anion exchange media loaded with hydrated ferric oxide (HFO) and copper (Cu2+ ) (Dow-HFO-Cu resin) to selectively capture phosphate, followed by clinoptilolite for ammonium removal and recovery. Nutrients were concentrated in the regenerants and recovered as precipitated struvite. Media exchange capacity after multiple ion exchange cycles was determined using permeate from an anaerobic membrane bioreactor (AnMBR) treating synthetic or actual municipal wastewater from a full-scale water reclamation facility. Regeneration through five ion exchange cycles using relatively low concentration regenerant solution (2% NaCl and 0.5% NaOH) resulted in the highest phosphate exchange capacity and phosphate recovery. This regenerant also provided the most consistent ammonium recovery. Column tests treating AnMBR permeate were performed over five ion exchange cycles; Dow-HFO-Cu resin exchange capacities ranged from 1.6 to 2.8 mg PO4 -P/g dry media. A maximum of 94% of the removed phosphate was recovered during regeneration. The rate and extent of regeneration was insensitive to regenerant salt concentrations in the range investigated. Precipitation using a mixture of the spent regeneration brines from the Dow-HFO-Cu resin and clinoptilolite columns produced low molar ratios of Mg:NH4 :PO4 , suggesting that the recovered product was not pure struvite. PRACTITIONER POINTS: Ion exchange-precipitation for the removal and recovery of PO 4 3 - and NH4 + from AnMBR permeate is a promising technology. 2% NaCl + 0.5% NaOH regeneration solution provided the most consistent exchange performance for both phosphate and ammonium recovery. Regenerated Dow-HFO-Cu resin exchange capacity was consistently less than the virgin resin, likely due to copper leaching during regeneration. Molar ratios in the precipitates suggested that the precipitated material was not pure struvite.


Asunto(s)
Compuestos de Amonio/aislamiento & purificación , Resinas de Intercambio Iónico/química , Fosfatos/aislamiento & purificación , Administración de Residuos/métodos , Zeolitas/química , Anaerobiosis , Reactores Biológicos , Membranas Artificiales
11.
Sci Total Environ ; 644: 661-674, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-29990914

RESUMEN

Current and future trends indicate that mining of natural phosphorus (P) reserves is occurring faster than natural geologic replenishment. This mobilization has not only led to P supply concerns, but has also polluted many of the world's freshwater bodies and oceans. Recovery and reuse of this nuisance P offers a long-term solution simultaneously addressing mineral P accessibility and P-based pollution. Available physical, chemical, and biological P removal/recovery processes can achieve low total P (TP) concentrations (≤100 µg/L) and some processes can also recover P for direct reuse as fertilizers (e.g., struvite). However, as shown by our meta-analysis of over 20,000 data points on P quantity and P form, the P in water matrices is not always present in the reactive P (RP) form that is most amenable to recovery for direct reuse. Thus, strategies for removing and recovering other P fractions in water/wastewater are essential to provide environmental protection via P removal and also advance the circular P economy via P recovery. Specifically, conversion of non-reactive P (NRP) to the more readily removable/recoverable RP form may offer a feasible approach; however, extremely limited data on such applications currently exist. This review investigates the role of NRP in various water matrices; identifies NRP conversion mechanisms; and evaluates biological, physical, thermal, and chemical processes with potential to enhance P removal and recovery by converting the NRP to RP. This information provides critical insights into future research needs and technology advancements to enhance P removal and recovery.

12.
Water Res X ; 1: 100003, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31194063

RESUMEN

Progress towards a more circular phosphorus economy necessitates development of innovative water treatment systems which can reversibly remove inorganic phosphate (Pi) to ultra-low levels (<100 µg L-1), and subsequently recover the Pi for reuse. In this study, a novel approach using the high-affinity E. coli phosphate binding protein (PBP) as a reusable Pi bio-adsorbent was investigated. PBP was expressed, extracted, purified and immobilized on NHS-activated Sepharose beads. The resultant PBP beads were saturated with Pi and exposed to varying pH (pH 4.7 to 12.5) and temperatures (25-45 °C) to induce Pi release. Increase in temperature from 25 to 45 °C and pH conditions between 4.7 and 8.5 released less than 20% of adsorbed Pi. However, 62% and 86% of the adsorbed Pi was released at pH 11.4 and 12.5, respectively. Kinetic experiments showed that Pi desorption occurred nearly instantaneously (<5 min), regardless of pH conditions, which is advantageous for Pi recovery. Additionally, no loss in Pi adsorption or desorption capacity was observed when the PBP beads were exposed to 10 repeated cycles of adsorption/desorption using neutral and high pH (≥12.5) washes, respectively. The highest average Pi adsorption using the PBP beads was 83 ±â€¯5%, with 89 ±â€¯4.1% average desorption using pH 12.5 washes over 10 wash cycles at room temperature. Thermal shift assay of the PBP showed that the protein was structurally stable after 10 cycles, with statistically similar melting temperatures between pH 4 and 12.5. These results indicate that immobilized high-affinity PBP has the potential to be an effective and reversible bio-adsorbent suitable for Pi recovery from water/wastewater.

13.
Microbiol Insights ; 8(Suppl 2): 37-44, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27127410

RESUMEN

Anaerobic digestion (AD) involves a consortium of microorganisms that convert substrates into biogas containing methane for renewable energy. The technology has suffered from the perception of being periodically unstable due to limited understanding of the relationship between microbial community structure and function. The emphasis of this review is to describe microbial communities in digesters and quantitative and qualitative relationships between community structure and digester function. Progress has been made in the past few decades to identify key microorganisms influencing AD. Yet, more work is required to realize robust, quantitative relationships between microbial community structure and functions such as methane production rate and resilience after perturbations. Other promising areas of research for improved AD may include methods to increase/control (1) hydrolysis rate, (2) direct interspecies electron transfer to methanogens, (3) community structure-function relationships of methanogens, (4) methanogenesis via acetate oxidation, and (5) bioaugmentation to study community-activity relationships or improve engineered bioprocesses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...